반도체
Semiconductor.
도체와 부도체의 특성을 모두 가지는 물질. 흔히 '도체와 부도체의 중간에 있는 물질'이라는 표현도 많이 쓰지만 이는 전기가 통하는 것도 안 통하는 것도 아니라는 모호한 표현이고, 좀 더 정확히는 어떤 조건에서는 도체지만 다른 조건에서는 부도체인 물질을 뜻한다.
반도체가 전기 전자 산업에서 중요한 이유는, 스위치 구실을 할 수 있기 때문이다. 특히 디지털에서는 이 스위치의 역할이 중요한데, 디지털은 우리가 잘 아는 대로 0과 1, 두 가지 값을 가진다. 이를 전기로 해석하면 전기가 통하지 않으면 0, 전기가 통하면 1이다. 따라서 디지털 정보를 저장하고 처리하기 위해서는 0과 1을 오가는 스위치가 많이 필요한데, 반도체는 기계적인 장치가 전혀 없이 오로지 전기로만 스위치를 구현하는 것이 가능하다. 따라서 스위치를 굉장히 작게 만들 수 있으며, 아주 빠르게 스위치를 켰다 껐다 할 수 있다.
종류
크게 두 가지로 나누면 메모리와 비메모리 반도체로 나눈다. 그만큼 메모리 반도체 시장이 크다는 뜻이다. 메모리가 3분의 1, 비메모리가 3분의 2를 먹고 있기 때문에 비메모리 시장이 두 배나 커 보이지만 비메모리는 말 그대로 '메모리 빼고 다' 들어가므로 온갖 걸 다 합쳐서 3분의 2라는 뜻이다.
메모리 반도체
정보를 저장하기 위한 반도체로 크게 전원이 끊어지면 정보도 사라지는 휘발성 메모리와 전원이 끊어져도 정보를 유지하는 비휘발성 메모리로 나뉜다. 휘발성 메모리의 주요 제품으로는 DRAM, SRAM이 있고, 비휘발성 메모리는 NAND 플래시가 단연 독보적이다. 삼성전자와 SK하이닉스의 주력 제품도 메모리 반도체로, 삼성은 DRAM과 NAND 플래시를 모두 주력으로 하고 있는 반면 SK하이닉스는 거의 DRAM에 올인하는 분위기. 휘발성 메모리는 비휘발성에 비해 속도가 아주 빠르기 때문에 CPU와 빈번하게 데이터를 주고받아야 하는 주기억장치에 사용된다. 전원이 끊어지면 어차피 CPU도 꺼지는 것이기 때문에 정보의 휘발성은 문제가 안 된다. 비휘발성 메모리는 속도가 느리지만 전원이 끊어져도 데이터를 보존할 수 있어서 SSD, 메모리 카드와 같은 저장장치에 쓰인다. 특히 SSD가 하드디스크 시장을 빠르게 잠식해 들어가면서 NAND 플래시 수요가 크게 늘어나는 추세인데, 개인용 컴퓨터는 물론 최근에는 안정적이면서도 대용량을 필요로 하는 서버 시장까지 치고 들어가고 있어서 성장 추세는 계속 빨라질 분위기다.
메모리 반도체는 소품종 대량생산을 특징으로 한다. 기기에 상관 없이 메모리는 대개 표준화되어 있기 때문에 주로 얼마나 같은 칩에 많은 용량을 저장할 수 있는지, 얼마나 빠른 속도로 입출력이 가능한지가 관건이다. 대규모 제조시설을 운영하면서 설계도 할 수 있는 종합 반도체 기업의 사업모델에 주로 적합하다.
비메모리 반도체
메모리 반도체 빼고 다라고 보면 된다. 컴퓨터의 두뇌 구실을 하는 CPU, 모바일 기기의 통합 프로세서인 AP, 그래픽을 위한 연산을 주 기능으로 하는 GPU, 디지털 카메라의 필름 구실을 하는 이미지 센서, LED, OLED를 비롯한 디지털 디스플레이에 쓰이는 디스플레이 컨트롤러, 그밖에 온갖 센서들도 다 비메모리 반도체에 들어간다.
비메모리 반도체는 소량 다품종 생산이 많기 때문에 종합 반도체 기업보다는 팹리스가 설계를 하고 파운드리가 제조를 하는 역할 분담이 주류를 이루고 있다. 종합 반도체 기업으로 비메모리를 주력으로 하는 곳은 인텔 정도. 인텔도 사업 초창기에는 메모리 반도체로 흥했다가 일본 업체들의 공세에 밀려 메모리 시장에서는 발을 뺀 케이스다.
반도체 기업의 종류
반도체 제조 과정을 크게 설계, 제조, 패키징 및 테스트, 이렇게 세 가지로 나눌 수 있다. 패키징 및 테스트는 앞의 두 개에 비하면 좀 부차적인 과정이고 설계와 제조, 이 두 가지 중 무엇을 하는지에 따라 반도체 기업을 종합 반도체 기업, 파운드리, 팹리스로 분류한다.
종합 반도체 기업
IDM(Intergrated Device Manufacturer)으로 줄여서 부르기도 한다. 반도체의 설계와 제조를 모두 하는 기업이다. 삼성전자, SK하이닉스가 대표적인 기업이고 미국의 인텔, 마이크론도 종합 반도체 기업에 속하지만 인텔은 일부 물량을 파운드리에 외주로 맡긴다. 삼성전자는 IDM이기도 하지만 파운드리 사업도 한다. 설계와 제조 두 가지를 모두 하기 때문에 기업의 규모가 아주 크다. 소품종 대량생산이 주요한 사업 모델인 메모리 반도체 쪽에 적합한 기업으로, 비메모리가 주력인 IDM은 인텔 정도밖에는 없다.
파운드리
제조만 하는 기업이다. 순수 파운드리(pure-play foundry)와 IDM 파운드리로 나뉜다. 순수 파운드리는 설계를 하지 않고 제조만 하는 기업이며, IMD 파운드리는 종합 반도체 기업이 파운드리로도 영업을 하는 것을 뜻한다. 순수 파운드리의 비중이 아주 높으며, IDM 파운드리는 삼성전자만이 어느 정도 점유율을 차지하고 있다. 주문을 하는 쪽의 입장에서는 설계도 줬다가 설계 기술을 빼먹는 거 아닌가 싶어서 IDM 파운드리 쪽에 주문하기는 좀 꺼려지는 부분도 있다. 고객사가 다양하며, 다품종 소량 생산 주문이 많기 때문에 고객사의 다양한 요구에 유연하게 대응할 수 있어야 한다.
이 분야의 본좌는 대만의 TSMC로 전체 파운드리 시장의 절반을 먹고 있고, 삼성이 20% 안팎으로 격차가 많이 나는 2위, 글로벌파운드리[1]가 3위다. 주요 고객은 다음에 나오는 팹리스지만, 인텔과 같은 IDM도 자체 생산 설비만으로는 시장 수요를 충족시킬 수 없을 때 파운드리에 일부 외주를 주기도 한다.
팹리스
파운드리와는 반대로 제조는 하지 않고 설계만 하는 기업이다. 미국의 AMD[2], 퀄컴, NVIDIA, 애플 등이 모두 팹리스로 분류된다. 설계 역량은 있지만 대규모 시설 투자가 필요한 제조 공장을 갖추기에는 자본력이 딸리는 스타트업이나 중소규모 기업들도 팹리스 체제로 간다. 그만큼 진입장벽이 낮아지므로 팹리스-파운드리 모델은 반도체 산업의 저변을 넓히는데 큰 역할을 한다. 애플 같은 거대 기업도 반도체로 먹고 살 것도 아니고 굳이 막대한 시설 투자를 하고 운영을 하느니 그냥 파운드리에 맡긴다.
공정
반도체는 흔히 '8대 공정'이라는 과정을 거쳐서 만들어진다. 일부 공정은 여러 번 되풀이하기도 하며, 이러한 공정을 거쳐서 반도체 제품이 나오기까지는 최대 3개월이 걸리는 것도 있다. 반도체 제조가 정말 어려운 이유는, 눈으로 볼 수가 없기 때문이다. 손톱보다 작은 크기의 칩에 트랜지스터, 다이오드, 저항, 커패시터 같은 소자들이 억대로 들어가는데, 흔히 반도체 공정의 미세화를 얘기할 때의 단위가 나노미터, 즉 10억 분의 1미터다. 흔히 작고 가는 것을 머리카락에 비유하는데, 머리카락 굵기가 대략 10만 나노미터 정도 된다. 최근 들어 반도체 공정의 초미세화 경쟁이 7 나노, 5 나노, 3 나노, 2 나노까지 가고 있을 정도이고, 이 정도가 되면 제조 공정을 거의 원자 수준으로 컨트롤을 해야 한다. 따라서 현미경으로는 당연히 안 보이고, 전자현미경으로도 겨우 회로의 윤곽 정도나 볼까말까한 정도다. 관찰도 불가능한데 만드는 걸 정확히 제어하는 건 더더욱 힘들다. 그러다 보니 반도체는 제조 과정에서 어느 정도 불량이 나올 수밖에 없고, 따라서 웨이퍼 하나에서 실제 사용가능한 칩이 얼마나 나오는지, 즉 '수율'이 중요하다. 기술 개발에 성공해도 수율이 안 나오면 채산성이 안 맞기 때문에 상용화를 못 하는 반도체도 많다.
웨이퍼 제조 공정
반도체의 가장 기반 재료인 실리콘 웨이퍼를 만드는 공정이다. 모래에서 실리콘을 추출하고 정제해서 고순도의 실리콘을 만들어 낸 후, 이를 녹이고 원통 모양의 단결정 실리콘 잉곳(ingot)을 만든다. 잉곳을 다이아몬드 톱으로 얇게 잘라내면 웨이퍼가 만들어진다. 웨이퍼의 지름이 크면 클수록 웨이퍼 한 장으로 만들 수 있는 칩의 수가 제곱으로 늘어나기 때문에 원가를 절감할 수 있지만 지름이 클수록 균일한 단결정 잉곳을 뽑아내기가 힘들어진다. 더욱 크기가 큰 웨이퍼를 만들려는 기술 개발도 이어지고 있다.
산화 공정
막 웨이퍼로 만든 실리콘은 반도체로서 기능을 전혀 하지 못한다. 이후에 진행될 각종 공정을 통해 비로소 반도체로 그 기능을 하는데, 그 첫 번째 공정이 산화 공정이다. 산화 공정은 웨이퍼의 표면에 SiO2 산화막을 만드는데, 이 산화막은 절연체 구실을 한다. 즉 산화막이 있는 부분은 절연 상태이고 없는 부분은 그 아래 실리콘이 노출되어 반도체로서 기능을 한다. 산화막은 실리콘을 보호하는 기능도 한다.
포토 공정
설계 도면을 실리콘 웨이퍼로 옮기는 공정. 가장 시간도 오래 걸리고 비용도 많이 드는 공정으로, 반도체의 기능과 성능을 결정하고 불량 여부 및 품질에 가장 결정적인 역할을 한다. '포토'라는 말에서 알 수 있는 것처럼 사진을 찍듯이 설계 도면을 웨이퍼 위에 '찍는다'. 흑백 필름 카메라로 사진을 찍으면 필름에 발라져 있는 감광제가 들어온 빛에 따라서 감광이 된다. 보통은 네거티브 필름, 즉 흑백이 반대로 필름에 찍히는데, 이 필름을 인화지 위에 놓고 빛을 쪼이면 필름의 투명한 부분은 빛이 통과하므로 인화지가 감광되며 불투명한 부분은 빛이 통과하지 못하므로 감광되지 않는다. 반도체도 이와 비슷한 방식으로 웨이퍼 위에 감광제, 즉 포토레지스트를 바르고 그 위에 필름 구실을 하는 마스크를 놓은 후 빛을 쪼이면 빛이 통과한 부분의 포토레지스트만 감광된다. 빛을 쪼이는 과정을 '노광'이라고 부른다.
설계 도면은 크기가 50~100 미터에 이를 정도로 아주 큰데, 물론 종이에 그리는 건 절대 불가능하고 CAD를 써야 한다. 칩 하나에 들어가는 반도체 소자가 몇 억개에 이를 정도니 도면이 클 수밖에 없다. 이를 가로 세로가 6인치 정도 되는 마스크에 올리고, 이 마스크를 웨이퍼 위에 놓고 빛을 쪼일 때에도 사이에 렌즈를 놓아서 크기를 확 축소시킨다.
노광을 마친 웨이퍼는 용해액에 담가서 감광된 포토레지스트만 없앤 다음, 식각 공정으로 넘어간다.
식각 공정
포토 공정에서 설계 도면을 찍어 놓은 웨이퍼를 식각액에 담가서 포토레지스트가 날아간 부분의 산화막을 부식시켜 없애는 공정이다. 동판화를 만드는 과정과 비슷하다. 포토 공정 다음으로 반도체의 기능과 불량 여부를 결정하는 아주 중요한 공정이다. 크게 액체에 담가서 산화막을 제거하는 습식 공정과 가스 플라즈마를 사용하는 건식 공정으로 나뉜다.